Definition of a 3D modeling method to create and test customized knee implants

Anna Ghidotti, Daniele Landi, Andrea Vitali

Contact author: anna.ghidotti@unibg.it

Dipartimento di Ingegneria Gestionale dell'Informazione e della Produzione (DIGIP) Università degli studi di Bergamo

INTRODUCTION

Pain and immobility issues insist on a 10-34% of patients after Total Knee Arthroplasty • Definition of a 3D modeling method to create customized implant Among the prevalent causes, there is **implant malalignment** Preparation and comparison of surgical virtual planning with To increase the rate of patient's satisfaction: **Off-the-shelf implant** AIM • Individualized or kinematic alignment **Custom-made implant** $\overline{\mathbf{C}}$ • Custom-made implants Study the performance of the implants in terms of stress and pressure distribution to understand which of the two implants better restore the normal 'healthy' condition **Finite Element Analysis** FEA to analyze contact pressures in the implants and investigate the Q causes of implant failures **METHODS**

Starting from MR images, the **3D model of a knee** has been reconstructed through a segmentation process.

Virtual surgical planning has been performed, following a kinematic allignment.

In the first scenario, an off-the-shelf implant has been virtually implanted. In the second scenario, a custom-made implant has been created.

FEA simulations have been performed in both the cases.

3D MODELING OF THE KNEE

VIRTUAL SURGICAL PLANNING

FINITE ELEMENT ANALYSIS

Tetrahedrons elements mesh

avg. element quality 0,89

Off-the-shelf implant

- Manual and semiautomatic segmentation
- Patient-specific anatomy

RESULTS

CONTACT PRESSURE [MPa]		
	Femoral-tibial compn	ents
lealthy condition	Off-the-shelf implant	Customized implant
3,97	3,56	2,07
	B: Static Structural Pressure Type: Pressure Unit: Pa Time: 1 05/10/2021 16:58 6.0177e7 Max 5,3886e7 4,7594e7 4,1303e7 3,5012e7 2,8721e7 2,2429e7 1,6138e7 9,847e6 3,5558e6 - ,2,755e6 - ,2,755e6 - ,5318e7 - 2,1609e7 - 2,79e7 Min	

CONCLUSIONS

- The study presents a 3D modeling method to create a customized knee prostehsis
- The customized implant is compared with the off-the-shelf implant and the healthy condition by means of FEA
- The customized implant allows a more uniform distribution of the compressive stress and the pressure
- Future development will face the definition a more complex virtual model for simulate the dynamic behaviour during gait